Micrography in Samuel Pepys’ Calligraphy Collection

by Frances Hughes


Fig 1: Micrographic text reproduced to form a diagrammatic projection of the Globe, c.1702. Pasted into Samuel Pepys’ Calligraphy Collection, Volume III, p.326. Size of vellum: 55x45mm. Image Credit: By permission of the Pepys Library, Magdalene College, Cambridge.

Towards the end of his life, Samuel Pepys began collecting samples of medieval manuscripts, calligraphy copy-books, and other miscellaneous textual fragments, which were then pasted into three albums to form his calligraphy collection [Pepys Library, Magdalene College Cambridge, 2981-3]. Within Pepys’ social and intellectual context there was a deep and multifaceted interest in the visual and material history of script. This blog post will briefly explore one manifestation of Pepys and his contemporaries’ interest in letter-forms: micrography. 

Volume III of Pepys’ collection features two pages dedicated to the art of ‘micrography’ or miniature writing. The content of some of these tiny sentences are invisible to the naked eye and instead appear as faint lines, made legible only when viewed through a microscope. Each of the samples are accompanied by labels, which explain their textual content in normal handwriting. The art of writing in miniature held a mythologised status as the ultimate demonstration of a writing master’s dexterity and was associated with extreme powers of vision. This tradition was rooted in the classical account of a parchment copy of The Iliad in miniature, which was so small that it could fit inside a nutshell. Part of the appeal of this legend was the fact that The Iliad was known for its epic length. Rather than The Iliad, sixteenth and seventeenth-century micrographic performances usually consisted of authoritative biblical and liturgical passages (The Lord’s Prayer, the Creed, and the Ten Commandments) rendered within the circumference of a particular coin. By using such familiar texts and the standardised diameters of coins, writing masters could more tangibly convey the magnitude – or, more appropriately, minuteness – of their achievement. Early users of the microscope devised various means for measuring the magnified features of natural specimens accurately, such as using grains of sand or the diameter of human hairs to understand the relative scale of magnification. Authoritative blocks of text and individual letters arguably provided similarly familiar notational markers through which comparative looking could be conducted down a microscope.

Micrographic texts provided legible artefacts through which the growing gentlemanly fashion for microscopic observation could be practiced. Pepys’ collection indicates that writing masters responded to new technologies of magnification by producing witty calligrams that were only visible using a microscope. The micrographic sample pictured above appears to the naked eye as a diagrammatic drawing of the globe upon the meridian, featuring navigational lines and markers such as the equator and the poles. The miniature text forming these lines is an English translation of Herman Hugo’s description of God’s creation of the world. The poem describes God copying his creation “o’er again in Miniature” to create Adam, “with all the Art of Heav’n design’d,/ The mortal Image of th’Immortal Mind.” Adam’s mind is described as a miniature microcosmic version of the entire world, a bridge between the creator and creation. The human artifice required to create this feat of micrography can therefore be seen, in turn, to mimic God’s creative act. Moreover, the relationship between mankind’s capacity for deciphering God’s creation and the process of reading miniature lettering recalls the famous reference to Adam in Robert Hooke’s Micrographia, where he describes the patterns of nature under the microscope as a form of divine language: “[W]ho knows, but the Creator may, in those characters, have written and engraven many of his most mysterious designs and counsels, and given man a capacity, which, assisted with diligence and industry, may be able to read and understand them.”

We know that Pepys read Robert Hooke’s Micrographia avidly and purchased his own microscope. Intellectually inclined gentlemen like Pepys could utilise their new optical aids by training them on the products of human artifice, practising their observational skills on texts that were more immediately ‘legible’ than biological specimens. These tiny samples evidence the diffusion of broader intellectual concerns on topics such as microscopy, natural philosophy and theology within the scribal arts, centred on interactions between intellectually-engaged clients such as Pepys and the writing masters that they patronised.

An Image Interview with Frances Willmoth

John Flamsteed’s Atlas Coelestis (1729): plate 13 of 25

Can you tell us briefly about yourself and your background?

I am Dr Frances Willmoth. I have recently retired as Archivist at Jesus College, Cambridge, but retain an affiliation to the Department of History and Philosophy of Science, Cambridge. A large part of my academic life has been involved with the careers of John Flamsteed (1646-1719), the first Astronomer Royal, and his patron Sir Jonas Moore (1618-1679).

Which picture have you chosen, and what does it show?

I have chosen a plate from Flamsteed’s posthumously published Atlas Coelestis (1729). It shows the constellation Monoceros – that is, the Unicorn – with Canis Major and Canis Minor.

Why have you chosen this image?

I’ve chosen something from the star atlas because the struggle to get it published had such a profound influence on the course of the last decade and a half of the astronomer’s life. This particular plate seems to me especially characterful, and artistically satisfying. The drafting of the artwork is credited to the well-known painter Sir James Thornhill.

How does this image resonate with you in the context of your work or research?

The chequered history of Flamsteed’s publications reflects the huge difficulty of publishing anything involving such enormous costs and technical challenges. The astronomer started a search for external funding for the publishing of his observations, star catalogue and atlas in the summer of 1703, by talking to one of the royal physicians and to Dr Martin Lister (FRS). His campaign eventually led to his securing a grant from Prince George of Denmark (Queen Anne’s consort). The subsequent unhappy history is well known, as the committee set up to supervise the expenditure disagreed with Flamsteed over how the project should be approached. The first edition of the Historia Coelestis (1712) was largely produced without the astronomer’s oversight and he rejected it as “spurious”. An extended second edition was not completed until 1725, some years after his death, and the star atlas even later.

Do you know anything about the making process of the image? 

Once the star positions had been established, the drafting of images for the plates was begun by one of Flamsteed’s observatory assistants, Thomas Weston. But he suffered from ill health and moved on in 1706 (becoming a schoolmaster in Greenwich). The connection of the finished plates with Thornhill dates from much later on, as a letter written by former Observatory assistant Crosthwait on 19 November 1720 reveals: “As to drawing the images … the famous Sir James Thornhill has undertaken this part, purely out of gratitude for favours formerly received from Mr Flamsteed”. In the previous decade Thornhill had spent a long time in Greenwich producing a spectacular decorative scheme for the Painted Hall at the Royal Naval College. Flamsteed himself appears in one of those paintings, with an assistant and his most famous astronomical instrument, the mural arc.

                  We don’t know what sources Thornhill looked to when it came to drawing the images for the Atlas, though he undoubtedly already had a large stock of suitable models. We know more about the lengthy process of getting the plates engraved. This was funded by Mrs Flamsteed, and is described in a series of letters written by Crosthwait to Abraham Sharp (another former Observatory assistant, who prepared the northern and southern planispheres). In 1722 Crosthwait travelled to the Netherlands to see if he could get plates engraved there more cheaply than in London. Consequently four of them were engraved in Amsterdam (Aquarius, Gemini, Cetus and one other), though the quality of the work proved disappointing and the rest were produced in London; all were printed in London.

What significance does the image have for the historical understanding of the relationship between knowledge-making and image-making?

It shows up how inadequate it might be to simply describe such an image as a source of knowledge. At one level it was intended to have that role, accurately reflecting the positions of stars as laid down in Flamsteed’s star catalogue (1712 and 1725). But the Thornhill connection places the plates squarely in the domain of fine art, reflecting the fact that the volume was aimed at noblemen’s or gentlemen’s libraries, as much as a being a working tool for future astronomers.

Do you have any additional thoughts or comments on the image you would like to share?

One point that comes across clearly here is that (as is not uncommon in the history of science) an achievement notionally credited to a single person in fact relied on the substantial contributions made by a number of collaborators. Here one must credit not only Flamsteed himself, for having produced the data, but also: the persistence of his widow Margaret and his former assistant (and niece’s husband) James Hodgson, who appear as editors of the volumes; the assistance given gratis by two more former Observatory assistants, Sharp and Crosthwait; Weston and Thornhill; and several engravers and at least one printer.

*Frances Willmoth is also the author of the children’s book Astronomouse. Copies can be purchased in person at the Whipple Library in Cambridge.

An Image Interview with Louisiane Ferlier

Plate from first volume of the Philosophical Transactions, 1665

Can you tell us briefly about yourself and your background?

Dr Louisiane Ferlier, Digitisation Project Manager at the Royal Society, in charge of the Royal Society Journal Collections: Science in the making. I have come to the project as an historian of ideas, my research investigates the role of religious institutions in the circulation of knowledge in the 17th century.

Which picture have you chosen, and what does it show? 

I have chosen the engraved plate inserted with issue 5 of the first volume of the Philosophical Transactions. It is composed of four figures corresponding to three articles from the issue published by Henry Oldenburg on July 3rd 1665.

Figure 1 relates to an article by Robert Moray entitled ‘An Account, how Adits & Mines are wrought at Liege without Air-shafts’. It shows a brick chimney and details how air, ash and minerals circulate within it.

Figure 2 and 3 are connected to the previous article as they show the promising invention by a Monsieur Du Son of a tool to ‘break easily and speedily the hardest Rocks’ which was communicated to Oldenburg by Moray. Resembling a stake, the tool was to be used as a chisel to drill through hard rocks when constructing mineshafts.

Figure 4 is the best known of the group and illustrates a two-part article communicating Robert Boyle’s description of a monstrous calf. The calf was born with a monstrous head described in the article as having ‘no sign of any Nose (…) the two Eyes were united into one Double Eye […] Lastly, that just above the Eyes, as it were in the midst of the Forehead, was a very deep depression, and out of that grew a kind of double Purse or Bagg.’ Alerted by the farmer of the monstrous birth, Boyle ordered for the head to be cut and preserved in alcohol.

Why have you chosen this image? 

This image frames powerfully the variety of topics discussed during the early meetings of the Royal Society and the wide range of scientific illustrations that can be found within the Philosophical Transactions. The juxtaposition of figures representing engineering tools next to the sketch of a zoological wonder captures the origins of the two strands of science which were separated into the A and B sides of the Philosophical Transactions in 1887 (A = mathematical, physical and engineering sciences and B = biological sciences).

I find that this juxtaposition creates a particularly interesting tableau reflecting the complexity of disciplinary boundaries in the early modern period. Considered as a single plate within a single publication, the plate unites scientific illustrations vastly different in their aims, executions as well as subjects. And, taken separately, each of the figures would lead us to discover a different network of correspondents, witnesses and collaborators, all supporting science in the making in a different way.

How does this image resonate with you in the context of your work or research?

The aim of the project I manage at the Royal Society is to create a new digital archive of its original journal collections. Illustrations such as this one are what motivated me to join the project in the first place. The archive will contain this image, its related articles and several thousands of others in high definition. It will allow researchers, curious visitors and future scholars to wonder about this strange creature, and wander from its representation to its fascinating description by Boyle. Or, to discover that mines are discussed throughout the history of the Royal Society and that a fascinating history of mining could be retraced from this illustration to the twentieth century through the pages of the Philosophical Transactions.

In many ways this image symbolizes the richness of the Philosophical Transactions as an archive of science.

Do you know anything about the making-process of the image? Does knowing how the image was created affect your understanding of the image?

I also picked this image precisely because I know very little about the original draughtsman of each figure as they could have been drawn by various people. The digging tool for instance could have been drawn by Monsieur du Son, its inventor, or equally, by Moray who communicated it to Oldenburg. The calf’s head, although it is described by Boyle, could have been drawn by another observer after it was preserved in alcohol (which would explain why the observer did not include the rest of the body, which Boyle did see before he had the head removed). The many hands through which each sketch must have travelled before that of the engraver are unknown, and even the engraver did not sign this specific plate.

This is an ideal example of a puzzle to offer to the ‘Making visible project’ where each piece is, in itself, another puzzle. Knowing about the specific of the making-process would reveal much about the circulation of knowledge in the early modern period.

What significance does the image have for the historical understanding of the relationship between knowledge-making and image-making?

The composite nature of the plate displays side by side two technical drawings and a natural history drawing. Much of the scholarship which discusses early image-making focuses on natural history but technical drawings used fascinating techniques to ‘truly’ and ‘faithfully’ represent science in the making. The engraving also encapsulates the complexity of scientific illustrations: without a scale or measures dedicated to each figure, the tool is of the same proportions to the shaft and the calf’s head with its dark lines attracts any viewer’s eye away from the technical drawings. The composition of the plate therefore transforms the experience of each figure. Moreover, each figure depends very heavily on its description included in the related articles to make any sense, yet, there is no explicit reference on the plate to the article.

Do you have any additional thoughts or comments on the image you would like to share?

I always thought that representing the calf’s head in profile was a strange choice: if the calf has no nose and a single eye, a front-facing view would be an easier perspective to depict the monstrosity. Accentuating the twisted tongue and the protuberance on the forehead, I find that the profile view makes him look nearly mischievous: as if he was pulling its tongue and winking at the reader.

An Image Interview with Alice Marples

Studies of a Crocodile or the Leviathan in Musaeum Regalis Societatis, 1686.
Studies of a Crocodile or the Leviathan from Nehemiah Grew, Musaeum Regalis Societatis, 1681

Tell us briefly about yourself and your background?

Alice Marples, historian of science and medicine in the 17th and 18th centuries, broadly interested in the social and cultural history of knowledge collection and exchange. My recently completed thesis explored diverse collecting and correspondence practices within medical and natural historical communities in Britain in the early eighteenth century, and examined how the physician and naturalist Hans Sloane influenced the institutionalisation and popularisation of science in Britain. Currently a postdoctoral research associate at the John Rylands Research Institute at the University of Manchester, working on medical education in Manchester between 1750-1850.

Which picture have you chosen, and what does it show?

This is an illustration entitled ‘Studies of a Crocodile or the Leviathan.’ It is a table from the 1686 edition of Musaeum Regalis Societatis, which was the catalogue of the contents of the Royal Society Repository (or Museum) written by its Keeper, Nehemiah Grew, and first published in 1681. It is a three foot, fold-out picture of one of the prize objects of the collection, a fifteen-foot crocodile.

Why have you chosen this image?

Crocodiles might be said to be symbolic of the Renaissance practice of natural history collecting. They were the jewel in most virtuoso’s collections and regularly feature in the visual representations of Cabinets of Curiosity or Kunstkammer, such as in Ferrante Imperato’s Dell’Historia Naturale (1599), which showed the crocodile suspended from the ceiling in his collection displayed at the Palazzo Gravina in Naples. Their ferocious appearance and exotic qualities helped to inspire wonder in the glory of God, his natural world, and those who were able to possess extraordinary pieces of it.

How does this image resonate with you in the context of your work or research?

For me, this image represents the ways in which the Society argued for a new, modern kind of science through the tropes and traditions of earlier forms of inquiry. Grew’s inclusion of the crocodile directly invokes the spectacle of the early modern scholarly Cabinet while simultaneously situating the Society’s Repository as its rational successor, bringing the crocodile down from the ceiling, dissecting, measuring and displaying its interior skeleton for all to see. Grew’s catalogue was a lavishly illustrated folio, one of the first scientific works produced entirely by subscription. It was a luxury commodity designed to popularise the work of the Society within polite circles, and invoke wonder not only in God but in the instruments and methods of ‘the New Science’ in bringing it under control and revealing its inner mysteries. I think that it is particularly pertinent that Grew explicitly includes a reference to the creature as the Leviathan in the Book of Job – a monstrous creature which no man can harness… Except, perhaps, in a company of natural philosophers.

Do you know anything about the making-process of the image? Does knowing how the image was created affect your understanding of the image?

Though it is not clear who made the drawing, the text accompanying it states that the specimen itself was ‘Given to Sir Robert Southwell; to whom it was sent from the East-Indies.’ Objects, drawings and scraps of knowledge were being sent from all over the world to private collectors and scientific societies via extensive and overlapping scholarly and commercial correspondence networks, all of which depended on multiple forms of authority. In the Catalogue, this picture is accompanied by an extensive description, the longest in the work, which includes information from many different accounts of the crocodile from ancient times to the present. It therefore places the Catalogue, and the Royal Society, fully in contemporary context of information exchange and, particularly, the increasing number of natural historical works attempting to compile, compare and systematise this in-flood of information about the world. Representing the skeleton of the crocodile according to scale alongside this text linked these efforts, the material with the historical, and implied that the Royal Society was an integral part of this process of knowledge production. Further, that it represented the sole means of epistemological arbitration.

What significance does the image have for the historical understanding of the relationship between knowledge-making and image-making?

Also on this page are drawings of ‘An Elephant’s Tusk’, ‘A Rattle Snak’s tail’ and ‘The Wessan’ (the windpipe of the crocodile) – all chosen, perhaps, for their similar aesthetic qualities. This helps to remind us that the comparative acts of looking in the physical space of the collection were also mirrored on paper and engineered through texts, and that the material boundaries between objects were liminal. Catalogues reflected, disseminated and imagined physical stocks of knowledge, interacting with published tracts, tacit knowledge and correspondence networks, allowing individuals to work with collections from a distance. The arrangement of similar but diverse objects together was designed, in part, to draw links between them: Grew’s Catalogue extended this comparative reach out from the Repository, to readers in the comfort of their own homes, with their own libraries, collections, reports and borrowed objects.

Do you have any additional thoughts or comments on the image you would like to share?

Grew’s catalogue was so successful at creating an image of power and intellectual authority for the Royal Society – an image which was retained through the Philosophical Transactions and the personal correspondence networks of Fellows – that visitors in the eighteenth century were often appalled by the relatively humble nature of the institution when they went to visit. Zacharias Conrad von Uffenbach, for example, wrote in 1710 of his shock that ‘the finest instruments and other articles (which Grew describes), [lie] not only in no sort of order or tidiness but covered with dust, filth and coal-smoke, and many of them broken and utterly ruined.’ I think this should serve to remind us that the physical possession of objects or knowledge was not necessarily as important as historians have sometimes deemed it, and that there was always a distance between the image and reality of the Royal Society.

A Visit to the Making & Knowing Lab

By Sietske Fransen & Katie Reinhart

As the start of the respective second and third years of our research projects, the Making Visible post-docs and the Genius before Romanticism team visited the Making and Knowing project last week at Columbia University in New York. The Making and Knowing project, led by Professor Pamela Smith, has the aim to reconstruct the sixteenth-century artisanal workshop as to understand more about the practice of making and knowing in the early modern period.

Oyster ash and cuttlefish bone are just a few of the things one will find in the Making & Knowing lab
Oyster ash and cuttlefish bone are just a few of the things one will find in the Making & Knowing lab

Based around an anonymous manuscript (BNF Ms. Fr. 640) the project transcribes and translates the manuscript and then reproduces the recipes and experiments as described by the author-compiler. The final outcome of the project will be a fully annotated and translated online edition of the manuscript. To do all this, the project’s director, the project manager, and three post-docs work closely together with a large group of experts (from the digital humanities to expert makers), while the reproducing of recipes mainly happens in a learning environment. The latter means that the research group offers graduate courses to students at Columbia University in which the students work with the manuscript, and re-create the described recipes.

A drawer of imitation coral
A drawer full of imitation coral

Since the theme of our current (second) year of the project is ‘expertise’, especially how expertise could be gained by the fellows of the Royal Society, and how expertise would help and influence their visual practices, a visit to the laboratory of the Making and Knowing project has been very insightful.

Every semester, the Making and Knowing project runs a graduate seminar where students from different fields can learn about early modern artisanal practices through hands-on participation in the lab. But, like any craft process it is hard to fully grasp without doing it yourself, so we donned our lab coats and joined the class for a day. The day we were observers, the subject under investigation was making and casting from bread moulds.

Scientific laboratory or modern day cabinet of curiosities?
Scientific laboratory or modern day cabinet of curiosities?

The day began with a seminar-style discussion of assigned readings; then the students discussed the various trials and tribulations of their attempts to bake bread from early modern recipes, which they completed ahead of time at home. Students followed various recipes, but unlike modern instructions, most did not include specific amounts, times, or temperatures leaving students to follow their best judgement (or guess) on how to proceed. A few students experienced with bread baking followed their instincts, but the rest had to wrestle with recipes that assumed a high degree of tacit knowledge. After baking, the students made moulds from the bread by impressing small objects (a key, a toy, a magnet) into the warm bread. As the bread dried out, they formed the the hardened mold which will later be filled.

Bread moulds ready for casting


After lunch we headed to the lab, where, after safety instructions and donning the appropriate gear, we were ready to get casting. The Making and Knowing lab uses the early modern materials described in BNF Ms Fr. 640 (bread, beeswax, cuttlefish bone), but modern equipment (hot plates for heating; fume hoods for safety). Over the next few hours, students slowly melted down the beeswax and sulfur (in the fume hood), and created a steady surface by cutting a flat surface into their bread or securing them with clamps or sand.

Melting the beeswax
Melting the beeswax

Once ready, they poured the molten sulfur or beeswax into their moulds. The pouring needed to happen quickly enough that the substance did not begin to harden, but slow enough that it did not splash out (as happened to Katie).

Katie tries her hand at pouring sulfur into a mould
Katie tries her hand at pouring sulfur into a mould

After filling, the moulds were left to set and harden. After fully setting, the bread was removed to reveal the finished cast object. The finished objects revealed that, as promised in the manuscript, bread was a surprisingly good medium to take an impression. In our excitement, we realised that we failed to take a picture of a final object from the bread moulding experiment, but the entire process was probably more interesting and important than the final product!


The second day of our visit to the Making and Knowing team consisted of an afternoon seminar in which all present participants of the three projects, presented on their work and experiences as researchers on these collaborative and interdisciplinary projects. The discussion was wide ranging, but over the course of the afternoon several themes and key questions arose. We talked about the knowledge that could be gained only be doing – knowledge of materials and processes that the Making and Knowing team learned over the course of their recreations.

However, how do we, as historians, study and communicate our ideas about what Pamela Smith calls ‘experiential knowledge’, if words are insufficient to explain or encompass this type of knowledge? It was interesting to hear from one of the new Making and Knowing postdocs, Tianna Uchacz, that she also found gaps or tacit knowledge in the descriptions of recipes by students. She experienced this by following their essays on the making of bread to bake her own bread for the bread moulding experiment. Would there be other ways to communicate and report our experiences? Not just verbally, but also through videos, drawings, and informal forms of writing? It is clear that these new forms of historical investigation might also call for new or alternative ways of communication.

20160926_144852 20160926_14490120160926_144913

A busy day in the Making & Knowing lab

One of the other major points discussed was the importance of failure. The importance of failure to learn and understand a process but also the reporting about failure to be able to understand and keep open the possibility of re-tracing one’s steps. Unfortunately many mistakes and failures are not written down and are therefore forgotten as essential steps in the process of knowledge creation.

Another part of the discussion centred on the value, and problems, with historical recreation. The Making and Knowing lab has gone to impressive lengths to obtain early modern materials, but they use modern heating, lighting, and laboratory equipment. Thus, how faithful can we consider the outcomes of their experiments to what might have happened in the past? This discussion resonated with us in relation to the slow start of our own intaglio project. We are using early modern engraving tools, but we are undertaking the project and learning to engrave in a very modern context. If we can’t devote the time and resources to truly becoming early modern engravers (which we can’t, we’re already historians) then is the whole endeavour pointless or can learning this skill, even in a modern way, still inform how we look on and understand the printed images we study?

Our visit to the Making and Knowing lab allowed us to reflect on and discuss these issues, and we thank Pamela Smith and all of her team for the invitation and for allowing us to join the lab for a day!

Ready for some history

An Image Interview with Ian Lawson

Louse from Robert Hooke, Micrographia, 1665


Can you tell us briefly about yourself and your background?

Ian Lawson, historian and philosopher of early modern science. I recently finished a PhD in the Unit for History and Philosophy of Science at the University of Sydney, about the seventeenth century natural philosopher Robert Hooke and his work with early microscopes. I am interested in his fiddly daily activities with the instruments and how they are interpreted and seen, not only in terms of the work he produced but the social position of such work. Now I’m visiting the Max Planck Institut für Wissenschaftgeschichte in Berlin, and planning out a new project about the optical instruments which became fashionable in Enlightenment Europe.

Which picture have you chosen, and what does it show? 

This is Hooke’s famous louse from his 1665 book Micrographia. Hooke drew the images for the book himself. He was an apprentice, for a while, to the portrait painter Peter Lely, and became an accomplished draftsman. The newly-founded Royal Society brought Hooke to London from Oxford for the express purpose of drawing insects, observed through a microscope, as gifts for King Charles II. The project morphed into a book, printed with the money and the blessing of the Royal Society, illustrated with 38 such pictures. This is one of the last, and folds out to the size of a small cat. It was a book which transformed things so small that no one had ever seen them before into household objects.

(There’s a video of William Poole talking about this aspect of the book and showing the page containing the flea, which gives a good impression of it’s size and heft. The book itself is on Project Gutenberg.)

Why have you chosen this image? 

It’s an impressive image considered solely as an early modern engraving, and a masterpiece of natural historical drawing (though it’s not my favourite drawing from Micrographia to look at). What grabs me about it is that it’s not a drawing of only a louse, but of Hooke as well. It’s his hair the creature is gripping, and his blood that colours the shapes in its abdomen. The picture relates the details of a louse, but it also represents, in a more abstract sense, a particular relationship that Hooke had with the world around him. In the blurb accompanying the image, he talks excitedly about keeping the louse in a jar, and starving it so when it’s let out it’ll feast on him and he can watch it swell up like a balloon.

Not everyone thought this to be an appropriate way to relate to a louse. (It is not, after all, the kind of creature that many people celebrate. Think about the creepy tenor of John Donne’s ‘The Flea’ or, later, Robbie Burns’ outrage at watching a louse keep polite company in ‘To a Louse’). Margaret Cavendish, for example, a keen natural philosopher and the Dutchess of Newcastle, wondered what beggars would think about this drawing. A better reason to examine these critters would be to show how to avoid their bites! She thought Hooke’s morbid interest was useless at best, and drawing such beguiling pictures risked distracting people from research that was genuinely socially useful.

How does this image resonate with you in the context of your work or research?

I’m interested in how new conceptions of nature and new methods of investigation became fashionable and socially popular. Why did Hooke, but not others, think it was interesting or appropriate to display a louse in this way? It’s funny now to think of this image or the microscope as controversial, but in early modern Europe it sure had it’s critics, both in popular and philosophical writing. Cavendish’s worry was, partly, the perfectly reasonable (and still current) one that educated and wealthy people could better spend their time trying to solve real problems. Considering the louse not only as a new kind of natural historical illustration but as a symbol of this disagreement makes it interesting to track the following popularity of the microscope. What did it mean that there was a fashion for them in the following century or so, and how much did their fashionability influence scientists’ opinions of the instrument?

What significance does the image have for the historical understanding of the relationship between knowledge-making and image-making?

Hooke also gave public lectures and demonstrated instruments in front of audiences, but there’s a sense in which the knowledge in Micrographia had to be a printed book. Hooke’s images, for all their naturalism, are not really of anything that he actually saw, or of anything directly visible through his lenses. He emphasises in the book that he drew pictures only after several examinations of an object, as he also lets on when he talks about watching the louse feed from him. He saw it in various shapes, positions, and more or less well-fed. His wizardry with lenses and light created only temporary glimpses at ever-changing objects, so image making was an essential part of knowledge making in that drafting, engraving, and printing also ‘fixes’ the knowledge into a stable form that can be returned to and re-examined.

What significance does this image have in the context of your field or work?

It shows, I think, what was essentially a new methodology in natural philosophy. Hooke loved that he could see through the louse to its insides. Several of his observations make this point, and he argued for his whole life that microscopes were the best method we had of discovering the ‘inner’ or ‘secret’ workings of things. To see inside objects without one, one would have to make incisions like an anatomist or dissolve things in acid or fire like an alchemist. With a microscope, he wrote, he could peek “through these delicate and pellucid teguments of the bodies of Insects” and, like a voyeur, watch Nature in action: “quietly peep in at the windows, without frighting her out of her usual byas” (Micrographia, observation 43). It’s an important and poetic moment in the history of natural scientific methodology. For one, it’s definitely in line with the fashion in Hooke’s time for viewing the world mechanistically, as if he would see the clockwork inside insects that made them tick. But it’s also vaguely democratic, in that doing so does not require a furnace or any other particularly spectacular equipment. It’s both a recognition that there’s more to be discovered about the world than is readily apparent, and that the method by which to do so is not hugely inaccessible.

An Image Interview with Katy Barrett


Map of the Philippines from the Philosophical Transactions, 1708
Map of the Philippines from the Philosophical Transactions 26, 1708

Can you tell us briefly about yourself and your background?

Dr Katy Barrett, Curator of Art at Royal Museums Greenwich. I’m a historian of art and science, coming out of a research background that’s also spread across history of collecting, anthropology, numismatics and natural history. I work on the 17th and 18th centuries, on maritime and exploration art, scientific illustration and visual culture. I’m interested, at the broadest level in how images and texts worked together, and how images were part of knowledge-making in the period. In the 21st century, I’m interested in how interdisciplinary collaboration and digital humanities allow us to conduct, discuss and disseminate ideas. I blog and tweet as Spoons on Trays.

Which picture have you chosen, and what does it show? 

My image is ‘A Map of the New Philippine Islands’ published in the Philosophical Transactions in January 1708. It was contributed along with extracts of two letters from Jesuit missionaries describing the newly ‘discovered’ islands shown in the map, how it had been constructed and an account of the indigenous inhabitants who had shared this knowledge. It shows the group of islands between what were then the Moluccos, the Old Philippines, and the Marianas, and mixes a variety of information in showing the ocean space. The plate is engraved by A. Johnston.

What strikes you about this image? Why does it interest you?

What is striking about this image is how it mixes indigenous knowledge with conventions of European mapmaking and engraving. The map is situated in relationship to the equator (or equinoctial line) running horizontally across the bottom, and the grid of degrees of latitude up each side. Longitude is mentioned in the text but not shown visually. Otherwise, however, the islands are shown based on the number of days taken to travel around the circumference or from the nearest neighbour. Their shapes and relationships, most notably are, as Father Le Gobien tells us, ‘not made by Europeans, for none have yet been upon these Islands, but by the Islanders themselves … Some of the most skilful of ’em ranged upon a Table as many little Stones as there are Islands belonging to their Country; and marked out, as well as they could, the Name of each, it’s Extent, and Distance from the others’ (Philosophical Transactions, 1708-1709, 26, p.197).

How does this image resonate with you in the context of your work or research?

This resonates for me on two levels. One is the complex mixing of different types and processes of knowledge, and the attempt to map an indigenous knowledge of ocean and island space within a European convention that was itself in development in the period. I would love to have been a fly on the wall at the meeting where this knowledge was conveyed. The other is in what is left unsaid in the process of image making. We are told that ‘the Map, thus traced out by the Indians … is here ingraved’, but so much is missing from that trail of inscription. The indigenous contributors laid out stones on a table, we’re told, but someone then had to interpret that on paper and combine it with European ideas. What was A. Johnston then given to engrave and when? We must bear in mind that one of the letters was originally written in 1697, what has happened to the image in the intervening ten years?

What significance does the image have for the historical understanding of the relationship between knowledge-making and image-making?

This helps to make us think very carefully about how we understand and explain such images. The process of making this image is fundamental to how readers of the Philosophical Transactions would then understand these New Philippine Islands as well as their inhabitants. In the making of this map, the indigenous contributors are unusually visible, discussed as part of a larger project of cultural understanding and missionary conversion. It is the, presumably European, draughtsmen and engravers who are obscured.

Do you have any additional thoughts or comments on the image you would like to share?

I’d also love to know if a copy of this map made it back to the Filipino makers!


This is the first in a series of “Interview blogs” in which we ask historians, art historians, curators, and scientists to comment on images related to the Royal Society. We are interested in the different ways the interviewees respond to (sometimes the same) images. 

An Intaglio Introduction

By Katie Reinhart

As my archaic dagger gets stuck, then skips along the piece of shiny copper, I wonder ‘how is this helping me as a historian?’

An engraving burin with a piece of copper
An engraving burin with a piece of copper

The sharp object in my hand is a burin, a carving tool used for copper plate engraving. At the moment I am trying my hand (unsuccessfully) at the technique of intaglio engraving, an early modern printing method.

Intaglio printing (which includes the techniques of engraving and etching) refers to the technique where the line incised into the plate (either with burin, dry point needle, or acid) is what will eventually appear dark when the plate is printed. This is in contrast to relief printing (like woodcuts) where what you carve away are actually the spaces that remain blank or un-inked during printing. All three of these techniques were used in the 17th century, although engraving and etching were most commonly used in the images created for the Royal Society’s publications like the Philosophical Transactions and Robert Hooke’s Micrographia.

An example of intaglio printing in Robert Hooke's Micrographia, 1665
An example of intaglio printing in Robert Hooke’s Micrographia, 1665

Thus, my colleague Sietske and I are attempting to learn the technique of engraving in hopes that it will help us further understand the relationship between graphic skill and image creation. 

@British Museum
Albrecht Dürer’s Rhinoceros is a famous example of a woodcut, 1515, @British Museum

Our ‘intaglio project’ is in its early days, and over the next several months we will post here about how we are progressing and our reflections on what we have learned in the process. So far, we have started at the very beginning. How to hold a burin, how to apply pressure to incise the copper, and how to clip off the curly ‘spur’ created if you do it all correctly.

Making Visible Postdoc Sietske Fransen tries her hand with the burin
Making Visible Postdoc Sietske Fransen tries her hand with the burin

Here are a few things I learned so far:

  • Engraving is difficult. I knew this, but like any skill one takes a go at, I have a new appreciation for the long training and apprenticeships necessary to learn to deploy such a craft, let alone with a high degree of finesse or skill.
  • Engraving is a completely different skill than drawing. The fine lines of engraved images almost make us think they were drawn with a pen, when in fact engraving is really a form of carving. The burin is not held like a pencil or quill with the fingers, but instead is grasped in the palm of the hand and driven along the plate. Instead of moving your wrist to make curves (as you would in painting or drawing) the burin always moves forward in a straight line and it is the plate that is moved to create a curved line.

    The challenging task of holding the burin
    The challenging task of holding the burin
  • Engraving is a complicated and multi-step process. I have also developed a new appreciation for the numerous steps involved in preparing a plate, engraving, cleaning, inking, and printing before a finished image is produced. With the burin and engraver carves lines that, after many more steps, are filled with ink and ultimately create the marks on the page. However, there are many more steps between wielding your burin and the final printed imaged. For instance, since engraving is a form of carving, you have to recon with the material carved away. In the case of burin engraving, this manifests as a thing curly copper ‘spur’ at the end of every line you engrave. These spurs need to be gently clipped off from the plate’s surface to get them out of your way, but also so they do not impact the shape of the line when the plate is printed.

    Copper Spurs
    Copper Spurs

Thus far my dilettante attempts at this 17th-century technique have yielded little more than a few scratched lines on a plate. I am working on making my lines consistent, and regulating pressure to varying their thickness, before I move onto the next challenge – curved lines. Check back here in the coming months as Sietske and I will be documenting the trials and tribulations of our intaglio project, as well as how it is making us reflect upon and think differently about the images that we study and the processes involved in making them.


Further reading:

David Landau and Peter Parshall, The Renaissance Print: 1470-1550 (New Haven: Yale University Press, 1994).

Pamela Smith and Tonny Beentjes, “Nature and Art, Making and Knowing: Reconstructing Sixteenth-Century Life-Casting Techniques,” Renaissance Quarterly 63, 1, (2010), pp.128-179.

Ad Stijnman, Engraving and Etching 1400-2000. A History of the Development of Manual Intaglio Printmaking Processes (Amsterdam: HES & De Graaf, 2012).